Uniqueness of minimal surfaces, Jacobi fields,and flat structures
نویسندگان
چکیده
منابع مشابه
Uniqueness of PL Minimal Surfaces
Using a standard fact in hyperbolic geometry, we give a simple proof of the uniqueness of PL minimal surfaces, thus filling in a gap in the original proof of Jaco and Rubinstein. Moreover, in order to clarify some ambiguity, we sharpen the definition of PL minimal surfaces, and prove a technical lemma on the Plateau problem in the hyperbolic space.
متن کاملDigital cohomology groups of certain minimal surfaces
In this study, we compute simplicial cohomology groups with different coefficients of a connected sum of certain minimal simple surfaces by using the universal coefficient theorem for cohomology groups. The method used in this paper is a different way to compute digital cohomology groups of minimal simple surfaces. We also prove some theorems related to degree properties of a map on digital sph...
متن کاملFlowing Maps to Minimal Surfaces: Existence and Uniqueness of Solutions
We study the new geometric flow that was introduced in [11] that evolves a pair of map and (domain) metric in such a way that it changes appropriate initial data into branched minimal immersions. In the present paper we focus on the existence theory as well as the issue of uniqueness of solutions. We establish that a (weak) solution exists for as long as the metrics remain in a bounded region o...
متن کاملG.P. Pirola∗ A REMARK ABOUT MINIMAL SURFACES WITH FLAT
In questo lavoro si prova un teorema di ostruzione all’esistenza di superficie minime complete nello spazio Euclideo aventi soltanto code piatte lisce. Nella dimostrazione confluiscono tecniche di geometria algebrica (spinori su supeficie di Riemann compatte) e differenziale (herisson e formula di monotonicità). Come corollario si ottiene che una superficie minimale di genere due avente tre cod...
متن کاملThe Moduli of Flat Pu(2,1) Structures on Riemann Surfaces
For a compact Riemann surface X of genus g > 1, Hom(π1(X),PU(p, q))/PU(p, q) is the moduli space of flat PU(p, q)-connections on X. There are two integer invariants, dP , dQ, associated with each σ ∈ Hom(π1(X),PU(p, q))/ PU(p, q). These invariants are related to the Toledo invariant τ by τ = 2P −pdQ p+q . This paper shows, via the theory of Higgs bundles, that if q = 1, then −2(g − 1) ≤ τ ≤ 2(g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2020
ISSN: 0002-9939,1088-6826
DOI: 10.1090/proc/14941